
Locks

The last Shared Data example had 10 processes
each incrementing a shared variable 10 times. The
final value of the variable should be 100 greater
than its starting value but it almost never is.
Several processes each read the value of the
variable, perhaps this is 55, and they each write
the next value, 56, into it. Instead of incrementing
the variable they are overwriting its value.

Imagine what would happen if deposits to a bank
account worked this way -- you start with $50,
deposit $100 and then deposit $25 and find that
your final balance is only $75. If we are going to
write programs where processes share data we
need to have some way to guarantee data integrity.

There are several solutions to this. We are going
to use a simple solution called a Lock. Lock is a
class in the multiprocessing module. The
constructor takes no arguments, so we create a
lock with Lock().

There are only two methods for the Lock class:
acquire() and release(). Acquiring the lock puts it
in its locked state; releasing it unlocks it.

The important thing about a lock is that when a
process tries to acquire it, the process is put on
hold until the lock becomes available. So if a
function has code
 blah blah
 lock.acquire()
 critical section
 lock.release()
then only one process at a time can execute the
critical section. Every other process that wants to
execute this section has to wait until the lock is
released so they can acquire it.

To make this work we generally create the lock
outside of the function and pass it in as an argument.
For example, the function that increments a shared
variable i might be

def F(r, lock):
 for i in range(0, 10):
 lock.acquire()
 r.value = r.value + 1
 print("Process %d set r to %d" %
 (current_process().pid, r.value))
 lock.release()

We need to be careful to match acquisitions and
releases of locks. This code will never finish running:

def F(r, lock):
 for i in range(0, 10):
 lock.acquire()
 r.value = r.value + 1
 print("Process %d set r to %d" % (current_process().pid,r.value))
 lock.release()

Why not???

